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Usual machine learning, usually based on strict assumptions, aims at finding a model that best fit the available (small amounts of) observational
data but often fail to generalize to the future observations. One reason is it ignores the underlying causal mechanisms that holds in both past and
future observations. Causal models provide solutions in representing the causal relationships between variables of the investigated system.
Bayesian network (BN), as a type of causal models, has attracted attentions of machine learning community because of its successful applications
in fields, such as fault diagnosis, automatic driving, and medical decision making. Structure learning of Bayesian networks, as part of causal
discovery issue, is crucial. After decades of study, statisticians and computer scientists have contributed various learning approaches. Within the
past three years, we conducted extensive literature review and empirical study and therefore saw challenges and rewards of BN structure learning.
Through this poster, we present the work we have done and findings and insights that deserve attraction.

Motivation

▶ Numerous Bayesian Network structure learning (BNSL)
algorithms have been proposed in the past 30 years.
However, there is no agreement on which one is ”best”.

▶ Most algorithms are based on a set of assumptions, such
as complete data and causal sufficiency and tend to be
evaluated with data that conform to those assumptions.
However, real-world data often does not obey those
assumptions.

Work

▶ We tested on three well-established networks (Asia, Alarm,
and Pathfinder) with up to 109 variables, and three
real-world application networks (Sports, ForMed, Property)
with up to 88 variables.

▶ We generated data of noise, such as missing values,
incorrect values, latent variables, merged states and their
combinations.

▶ We investigated the performance of 15 well-established
BNSL algorithms. They are PC-stable, FGES, FCI, GFCI,
RFCI-BSC, Inter-IAMB, MMHC, GS, HC, Tabu, HC, H2PC,
SaiyanH, ILP, WINASOBS, NOTEARS.

▶ We considered implementations (with defaul parameters) of
tested algorithms from software or packages, including
bnlearn (R), r-causal (R), GOBNILP (C), BLIP (Java),
Bayesys (Java), and NOTEARS (Python).

▶ The algorithms were evaluated in terms of metrics, such as
F1, SHD, BSF and time complexity.

▶ This work involved learning over 7,000 graphs with a total
learning runtime of seven months.

Results

Algorithms F1 SHD BSF
Average rank Overall rank Average rank Overall rank Average rank Overall rank

FCI 7.7 9th 6.57 7th 7.67 9th
FGES 7.5 8th 7.83 10th 7.1 8th
GFCI 6.87 7th 6.87 9th 6.97 6th
GS 11.87 14th 10.43 13th 11.9 14th

H2PC 6.13 5th 5.1 3rd 6.97 6th
HC 3.63 2nd 4.77 2nd 3.17 2nd
ILP 4.8 3rd 6.43 5th 4.13 3rd

Inter-IAMB 10 12th 8.6 12th 10.43 12th
MMHC 7.77 10th 6.47 6th 8.6 11th

NOTEARS 12 15th 13 15th 12 15th
PC-Stable 8.1 11th 6.83 8th 8 10th
RFCI-BSC 11.5 13th 10.9 14th 11.47 13th
SaiyanH 5.33 5th 8 11th 4.77 5th

Tabu 3.27 1st 4.43 1st 3.1 1st
WINASOBS 6.3 6th 5.87 5th 6.17 5th

Table: Average and overall ranked performance of the algorithms over all
case studies in noise-free experiment, as determined by each of the three
metrics.

Algorithms F1 SHD BSF
Average rank Overall rank Average rank Overall rank Average rank Overall rank

FCI 8.67 11th 8.67 12th 8.23 11th
FGES 7.15 8th 7.12 8th 7.37 8th
GFCI 7.26 9th 6.91 7th 7.60 10th
GS 11.74 15th 9.54 13th 11.68 14th

H2PC 5.66 5th 4.96 3rd 6.26 5th
HC 3.60 1st 4.92 2nd 3.03 1st
ILP 5.17 3rd 6.72 6th 4.35 3rd

Inter-IAMB 9.79 12th 7.82 9th 9.98 12th
MMHC 6.51 6th 4.66 1st 7.59 9th

NOTEARS 11.65 14th 12.83 15th 12.51 15th
PC-Stable 7.59 10th 7.87 10th 7.15 7th
RFCI-BSC 11.5 13th 11.05 14th 11.54 13th
SaiyanH 5.27 4th 7.87 11th 5.16 4th

Tabu 3.62 2nd 4.99 4th 3.13 2nd
WINASOBS 6.54 7th 5.49 5th 6.77 6th

Table: Average and overall ranked performance of the algorithms over all
case studies in noise-based experiments determined by the three metrics.

The cumulative runtime of the algorithms over noise-free (left)
and noise-based (right) experiments.

Findings

▶ Performance of algorithms tested on traditional synthetic
data drops on the real-world data.

▶ A higher fitting score does not necessarily imply a more
accurate causal graph.

▶ Score-based algorithms are generally superior to the
constraint-based algorithms.

Challenges and Opportunities

▶ Causal discovery, especially from complicated real-world
data (with hidden variables, selection bias, measurement
errors), is far from trustworthy.

▶ Causality plays crucial roles in explainable AI and causal
elements enhance the interpretability of AI models.
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